中国积分网

您现在的位置是:网站首页>积分兑换礼品

积分兑换礼品

人脑天生会算微积分并应用于精准控制奔跑来自MIT团队

中国积分网2023-01-17积分兑换礼品广发卡积分怎么兑换
信用卡兑换积分商城,广发卡积分怎么兑换,浦发银行积分兑换星巴克,人脑天生会算微积分并应用于精准控制奔跑来自MIT团队,信用卡兑换积分商城,广发卡积分怎么兑换,浦发银行积分兑换星巴克他们认为,大脑并非通过单一信号对高速运动精准控制,而是基于一套复杂的信号处

人脑天生会算微积分并应用于精准控制奔跑来自MIT团队

人脑天生会算微积分并应用于精准控制奔跑来自MIT团队,

  信用卡兑换积分商城,广发卡积分怎么兑换,浦发银行积分兑换星巴克他们认为,大脑并非通过单一信号对高速运动精准控制,而是基于一套复杂的信号处理系统,对抑制、兴奋两种信号进行比对处理,得到最终指令。

  论文中,研究团队还用一套更「形象」的说法描述该过程——大脑在自己算微积分。

  控制走路跑步的机制本身不难描述——大脑有个中脑运动区(MLR),它会向脊髓神经元发送信号。

  信号后又流向腿部肌肉的运动神经元,这其中,兴奋、抑制两种信号分别直接控制了身体活动与停止。

  他们将其小鼠头部固定,通过光遗传学设备控制神经元激活,同时让小鼠脚底踩着跑步机,给到特别的灯光图案地标,训练它移动。

  若小鼠能走到地标处站住,并保持静止1.5s,就能听见奖励音并获得喂水,然后,继续去下一个指定位置。

  如果小鼠在30分钟内成功停留100次,研究者即开始研究其行为模式及信号传递过程。

  结果发现,小鼠为更快获得奖励,会先尽可能加速奔跑,然后在接近目标一定位置,快速刹车,以保证在正确位置停下。

  科研者认为,此种现象证明了小鼠瞬间切换了自己的运动决策模式,并用一套方程描述该过程:

  基于上面结论,结合之前理论研究,科研团队假设,大脑皮层的次级运动皮层(M2)到控制运动的中枢底丘脑核 (STN),即M2-STN通路,所发信号,控制了动物运动的停止。

  为此,他们向该通路输入信号,激活它。结果证实,小鼠奔向目标中,确实会提前停下,如下图A所示:

  从中,他们能直接发现,在地标图案停止处,通路中神经元也同步出现停止信号。与之对应的,即便小鼠在途中停下,M2-STN通路停止信号却并未出现。

  这说明了,该通路与小鼠奔向目的地任务直接相关,而与一般运动的停止活动无关,且由视觉输入信号主导系统变化。

  更进一步,科学家将大脑各部分所监测到的活跃度随时间变化函数汇总,得到以下曲线:

  科研工作者将上述大脑各部分信号活跃函数汇总建模,给出一个对时间进行微分的反馈控制系统。

  由次级运动皮层(M2)的视觉信号作为输入项。经过STN、MLR等部分,分成兴奋、抑制两路信号通过系统运算。

  在构建系统中,研究者特别指出,由于脑内PPN部分连有多路神经元驱动运动,因此,系统对其进行了微分运算,来抵消随时间累积的积分运算影响。

  科学家认为,正是基于上述系统,我们的身体能够短时间内快速根据输入信号切换运动模式,精准地在目的地到来前某个位置「开启减速刹车」,最终停在特定位置。

  Elie Adam博士专注于使用数学方法结合实验工程学来研究大脑动力学。

  本文为澎湃号作者或机构在澎湃新闻上传并发布,仅代表该作者或机构观点,不代表澎湃新闻的观点或立场,澎湃新闻仅提供信息发布平台。申请澎湃号请用电脑访问。

很赞哦!